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Abstract

Electroweak baryogenesis in the minimal supersymmetric extension of the Standard

Model may be realized within the light stop scenario, where the right-handed stop

mass remains close to the top-quark mass to allow for a sufficiently strong first order

electroweak phase transition. All other supersymmetric scalars are much heavier to

comply with the present bounds on the Higgs mass and the electron and neutron

electric dipole moments. Heavy third generation scalars render it necessary to resum

large logarithm contributions to perform a trustable Higgs mass calculation. We have

studied the one–loop RGE improved effective theory below the heavy scalar mass scale

and obtained reliable values of the Higgs mass. Moreover, assuming a common mass m̃

for all heavy scalar particles, and values of all gaugino masses and the Higgsino mass

parameter about the weak scale, and imposing gauge coupling unification, a two-loop

calculation yields values of the mass m̃ in the interval between three TeV and six

hundred TeV. Furthermore for a stop mass around the top quark mass, this translates

into an upper bound on the Higgs mass of about 150 GeV. The Higgs mass bound

becomes even stronger, of about 129 GeV, for the range of stop and gaugino masses

consistent with electroweak baryogenesis. The collider phenomenology implications of

this scenario are discussed in some detail.

http://au.arxiv.org/abs/0806.4297v2


1 Introduction

The minimal supersymmetric extension of the Standard Model (MSSM) has become the

preferred candidate for the ultraviolet completion of the Standard Model (SM) beyond the

TeV scale. The MSSM description may be extended up to a high (GUT or Planck) scale,

and the search for supersymmetric particles is therefore one of the main experimental goals

at the forthcoming Large Hadron Collider (LHC) at CERN. Among its main virtues, on

top of solving the hierarchy problem of the Standard Model, the MSSM leads to a natural

unification of the gauge couplings consistent with precision electroweak data and provides

a natural candidate for the Dark Matter of the Universe (namely the lightest neutralino).

On the other hand electroweak baryogenesis [1] is a very elegant mechanism for gen-

erating the baryon asymmetry of the Universe that can be tested at present accelerator

energies and, in particular, at the future LHC. It turns out that electroweak baryogenesis

can not be realized within the Standard Model [2, 3], while it is not a generic feature

of the MSSM for arbitrary values of its parameters [4, 5]. However, a particular region

in the space of supersymmetric parameters was found in the MSSM, where electroweak

baryogenesis has a chance of being successful [6], dubbed under the name of light stop

scenario (LSS).

Since the generation of the BAU in the LSS is challenging other alternatives (where the

right-handed stop is not singled out) have been explored in the literature. In particular

in the context of split supersymmetry, and if one allows Rp-violating couplings, it was

proven in Ref. [7] that superheavy squarks can produce enough baryon asymmetry when

they decay out-of-equilibrium, while some splitting between left and right-handed mass

squarks is required by the gluino cosmology. Moreover beyond the MSSM there are plenty

of other possibilities. The simplest one is introducing singlets in the MSSM light spectrum

(the so-called NMSSM [8] or nMSSM [9]), or even adding an extra Z ′ gauge boson [10],

which easily triggers a strong first order phase transition.

Since the generation of the BAU in the MSSM has inherent uncertainties of order one,

large variations in the final results appear due to the different approaches which have

been considered in the literature [11] 1. According to these results, it looks possible to

achieve the proper baryon asymmetry fulfilling all experimental bounds and in view of the

forthcoming LHC running, it is worth refining the predictions of the LSS. In this paper

we will then consider the effective theory of the LSS while in a companion paper [13] the

phase transition will be analyzed in great detail using the results provided by the present

analysis.

The light stop scenario of the MSSM is characterized by a light right-handed stop

(with a mass near the top quark mass) while all other squarks and sleptons should be

heavy enough in order to cope with present LEP bounds on the Higgs mass and to avoid

large flavor, CP violation and electric dipole moment effects [14, 15]. On the other hand,

1For instance, a possible contribution to the baryon asymmetry coming from light sbottons and staus

have been recently explored in Ref. [12].
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supersymmetric fermions (Higgsinos and gauginos) are required to be at the electroweak

(EW) scale (this fact can be technically natural as a consequence of some partly conserved

R-symmetry) in order to trigger the required CP-violating currents needed for baryoge-

nesis [11], as well as providing a Dark Matter candidate [16]. Moreover even if the LSS

is consistent with a light CP-odd Higgs boson, a large splitting between the lightest CP-

even Higgs and the CP-odd Higgs masses helps to avoid all phenomenological constraints,

because it emulates the Standard Model Higgs sector at low energy (LE).

In practice we will consider all heavy scalars (sleptons, non-SM Higgs bosons and

squarks, except for the right-handed stop) at a common scale m̃ and study the LE Effective

Theory (ET) below that scale. We will use the MS renormalization scheme and resum

the large logarithms which will appear in the calculation of various observables by using

Renormalization Group Equations (RGE) techniques. In particular we will make use of the

run-and-match technique [17] by which every particle decouples at its mass scale using the

step-function approximation. The high-energy (HE) and LE theories, with different RGE

in both regions, should match at the decoupling scale providing (finite) thresholds for the

various couplings. In this way, considering a common decoupling scale is an approximation

which amounts to neglect possible thresholds corresponding to the mass differences around

m̃, and that should not affect our results in a significant way.

For very large values of m̃ the model is a variant of Split Supersymmetry [18], where

the right-handed stop is also (light) in the LE theory. Thus in the spirit of Split Super-

symmetry every light particle is required by one particular experimental input: apart from

the light Higgs, required by electroweak symmetry breaking, the light stop is required to

trigger a strong enough first order phase transition while light charginos and neutralinos

are required to generate enough baryon asymmetry and to become dark matter candi-

dates. On the other hand gauge coupling unification, which works reasonably well in the

MSSM, is an important issue. As we will see a two-loop analysis points towards values

of m̃ between ten and one hundred TeV for the case where all gauginos are at the elec-

troweak scale, and around one order of magnitude larger for hierarchical gaugino masses

as required by gaugino mass unification and by electroweak baryogenesis.

The outline of this paper is as follows. In Section 2 we present our LE effective

theory below m̃ as well as the matching conditions between the couplings of LE and HE

theories, the threshold conditions for the different couplings and the β-functions in the

LE Effective Theory. The technical details of the calculation of threshold conditions are

presented in Appendix A and those about the RGE in Appendix B. In section 3 we present

the numerical results based on the calculation of the previous section. In particular, the

predictions of different parameters in the LE effective theory and the corresponding value of

the Higgs mass. In Section 4 we consider the issue of gauge coupling unification. We show

that the unification scale is MGUT = 1 ÷ 2 × 1016 GeV while imposing the experimental

value for the strong coupling leads to values of the heavy sfermion masses m̃ in good

agreement with the values of the parameters required to fulfill the electric dipole moment

constraints in the EWBG scenario within the MSSM [14, 15, 16]. In Section 5 we present
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some ideas for the experimental detection of t̃R in our model, as well as the possibility of

having a Dark Matter candidate. Finally in Section 6 we present our conclusions.

2 The effective theory

The theory at an energy scale τ between the EW scale and m̃, at which supersymmetry

is broken, contains all the SM particles and the Bino, Winos and Higgsinos, as well as the

light stop. All other squarks and sleptons are heavy, with masses about m̃, and decouple

from the low energy theory. The gluino, with a mass M3 much below m̃, may be much

heavier than the other gauginos and, in this case, when τ < M3 it will decouple too.

Therefore the corresponding low energy effective Lagrangian is given by

Leff = m2H†H − λ

2

(
H†H

)2
− ht [q̄LǫH∗tR] + Yt

[
H̃uǫqLt̃∗R

]

−M3

2
Θg̃ g̃ag̃a − M2

2
W̃ AW̃ A − M1

2
B̃B̃ − µH̃T

u ǫH̃d − M2
U

∣∣t̃R
∣∣2

−
√

2Θg̃G t̃Rg̃aT
a
tR +

√
2J t̃RB̃tR − 1

6
K
∣∣t̃R
∣∣2 ∣∣t̃R

∣∣2 − Q
∣∣t̃R
∣∣2 |H|2 + h.c.

+
H†
√

2

(
guσaW̃ a + g′uB̃

)
H̃u +

HT ǫ√
2

(
−gdσ

aW̃ a + g′dB̃
)

H̃d + h.c. , (2.1)

where the gluino decoupling is taken into account by the symbol Θg̃ which is equal to 1 (0)

for τ ≥ M3(τ < M3). For simplicity in (2.1) we do not write the kinetic terms explicitly and

we approximate the Lagrangian by taking into account only interactions of the SM fields,

charginos, neutralinos and the right-handed stop coming from renormalizable high energy

terms proportional to the gauge couplings g′, g, g3 or the supersymmetric top Yukawa cou-

pling λt without considering flavour mixing. Furthermore in (2.1) the field H is defined as

the light projection of the MSSM Higgs bosons, given by Hu → sinβH ,Hd,i → cos βǫijH
∗
j ,

with tan β ≡ 〈H0
u〉/〈H0

d 〉.
At the energy scale m̃ the effective Lagrangian (2.1) has to describe the physics of

the HE theory, which implies that the following one–loop matching conditions have to be

satisfied

Q(m̃) − ∆Q =

(
λ2

t (m̃) sin2 β +
1

3
g′2(m̃) cos 2β

)(
1 − 1

2
∆ZQ

)
, (2.2)

λ(m̃) − ∆λ =
g2(m̃) + g′2(m̃)

4
cos2 2β

(
1 − 1

2
∆Zλ

)
, (2.3)

K(m̃) − ∆K =

(
g2
3(m̃) +

4

3
g′2(m̃)

)(
1 − 1

2
∆ZK

)
, (2.4)

G(m̃) − ∆G = g3(m̃)

(
1 − 1

2
∆ZG

)
, (2.5)

ht(m̃) − ∆ht = λt(m̃) sin β

(
1 − 1

2
∆Zht

)
, (2.6)
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Yt(m̃) − ∆Yt = λt(m̃)

(
1 − 1

2
∆ZYt

)
, (2.7)

gu(m̃) = g(m̃) sin β , gd(m̃) = g(m̃) cos β , (2.8)

g′u(m̃) = g′(m̃) sin β , g′d(m̃) = g′(m̃) cos β , (2.9)

J(m̃) =
2

3
g′(m̃) , (2.10)

where the quantities ∆Q, ∆λ, ∆K, ∆G, ∆ht, ∆Yt and ∆Zi are the threshold functions.

In particular ∆Zi are the wave function thresholds coming from the matching of low and

high energy propagators and the canonical normalization of ET kinetic terms while the

others come directly from the matching of the low and high energy proper vertices (details

of the calculation are given in Appendix A).

In this work we will consider for the threshold and β-functions the leading contributions

and thus we will use the approximation of neglecting the one–loop corrections proportional

to g′, g and the Yukawa couplings other than that of the top-quark (as well as the low

energy couplings correlated to those). Following this criterion we consider no threshold in

the matchings (2.8)-(2.10) since they do not appear at tree-level and would correspond to

the one–loop corrections that we are neglecting.

The same analysis has to be redone when the renormalization scale τ becomes lower

than M3 and the gluino decouples. In this case the interaction term of (2.1) involving

the coupling G disappears and the following matching conditions relate the values of the

couplings before and after the gluino decoupling:

Q(M−
3 ) = Q(M+

3 )(1 − ∆′Zt̃R
) ,

K(M−
3 ) = K(M+

3 )(1 − 2∆′Zt̃R
) + ∆′K ,

ht(M
−
3 ) = ht(M

+
3 )(1 − ∆′ZtR/2) , (2.11)

Yt(M
−
3 ) = Yt(M

+
3 )(1 − ∆′Zt̃R

/2) ,

M2
U (M−

3 ) = M2
U (M+

3 )(1 − 2∆′Zt̃R
) + ∆′M2

U ,

where ∆′Zt̃R
(∆′ZtR) is the wave function threshold of the right stop (top) and ∆′K and

∆′M2
U are the proper vertex threshold. The matching conditions of the couplings absent

from (2.11) are trivial since they have no threshold discontinuity when the renormalization

scale crosses M3. Readers interested in the explicit form of the thresholds of (2.2)-(2.11)

can find them in Appendix A, Eqs. (A.7)-(A.13) and (A.19).

For energy scales between the top mass and m̃, at which all scalars apart from the

right-handed stop and the Standard Higgs doublet are decoupled, one can compute the

one-loop β-functions of the gauge constants 2 in a straightforward way

(4π)2βgi
= g3

i bi with b =

(
143

30
,−7

6
,−41

6
+ 2Θg̃

)
,

2The two-loop beta functions will be given in Section 4 where the issue of gauge coupling unification is

considered.
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where we have used the GUT convention g2
1 = (5/3)g′2.

For the RGE of the other couplings we will only report their expressions and leave the

calculation details to Appendix B. For the dimensionless couplings we obtain

(4π)2βgu
= gu

(
3h2

t +
3

2
Y 2

t

)
, (4π)2βgd

= 3 gd h2
t ,

(4π)2βg′u = g′u

(
3h2

t +
3

2
Y 2

t

)
, (4π)2βg′

d
= 3 g′d h2

t ,

(4π)2βJ = J

(
h2

t + 2Y 2
t +

12

3
G2Θg̃ − 4g2

3

)
,

(4π)2βYt
=

1

2
Yt

(
h2

t + 8Y 2
t +

16

3
G2Θg̃ − 8g2

3

)
,

(4π)2βG =
1

2
G
(
9G2 + 2h2

t − 26g2
3 + 4Y 2

t

)
, (2.12)

(4π)2βht
= ht

(
9

2
h2

t +
1

2
Y 2

t +
4

3
G2Θg̃ − 8g2

3

)
,

(4π)2βλ = 12λ2 + 6Q2 − 12h4
t + 12h2

t λ ,

(4π)2βQ = −32

3
G2h2

t Θg̃ − 4Y 2
t h2

t + Q

(
K + 3λ + 4Q + 6h2

t + 4Y 2
t +

16

3
G2Θg̃ − 8g2

3

)
,

(4π)2βK = 12Q2 + 13g4
3 − 88

3
G4Θg̃ − 24Y 4

t + K

(
14

3
K + 8Y 2

t +
32

3
G2Θg̃ − 16g2

3

)
,

and for the dimensionful ones

(4π)2βµ =
3

2
µ Y 2

t ,

(4π)2βM1
= O(g2

1) , (4π)2βM2
= O(g2

2) ,

(4π)2βM3
= M3

(
−18g2

3 + G2
)

, (2.13)

(4π)2βm = −6Q M2
U + 6m2h2

t ,

(4π)2βM2

U

= M2
U

(
8

3
K + 4Y 2

t +
16

3
G2 − 8g2

3

)
− 32

3
M2

3 G2Θg̃ − 4m2Q − 4Y 2
t µ2 ,

where βG and βM3
make sense only for τ ≥ M3.

3 Numerical results on the Higgs mass

In this section we will apply the previous results to obtain in an appropriate way the values

of the LE couplings and the Higgs mass at the EW scale for any large value of the cutoff

scale m̃ and for different values of the HE supersymmetric parameters.

3.1 Running of couplings

We need to know all the couplings of (2.1) at the EW scale that we identify here with

the top-quark mass mt = 172.5 ± 2.7 GeV [19] (corresponding to ht(mt) ≃ 0.95). All
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the mass parameters M2
U , µ,M3 are free inputs of the theory and thus we choose them

directly at low energy by fixing M2
U (mt), µ(mt),M3(M3). Moreover at the low scale also

the SM couplings g(m̃), g′(m̃), g3(m̃), ht(m̃) and m2(mt) are fixed experimentally 3. On the

contrary the non-SM couplings are defined by (2.2)-(2.10) at high energy as functions of

the previous couplings, run up to the scale m̃, and the free quantities m̃, tan β and At(m̃).

Therefore in order to get the non-SM couplings at the EW scale we have to solve a system

of linear differential equations [the RGE (2.12)-(2.13)] with boundary condition in τ =

mt,M3, m̃. Equations must be solved numerically and iteratively because the conditions

at the boundary m̃ (2.2)-(2.10) depend in turn on the evolution of the parameters. The

implicit resummation of the leading logarithms renders our estimation of the ET couplings

reliable, even for large values of m̃. Using this procedure the values of the LE couplings at
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Figure 1: Upper–left panel: We plot for every coupling the ratio δ of its value at the decoupling

scale m̃ over its value without any threshold contribution, as a function of At/m̃ for m̃ = 100 TeV.

Upper-right and lower panels: the ratio Θ between the couplings at τ = mt and their starting

value at τ = m̃ (for the coupling M3 and G the lower τ value is τ = M3) is plotted as function of

m̃, for At = 0.6 m̃. In all plots tanβ = 2, MU = 200 GeV, M3 = 500 GeV and µ = 100 GeV have

been fixed.

3The parameter m2(mt) is fixed by the condition that the minimum of the SM-like Higgs one–loop

potential be v = 246.22 GeV at the scale mt.
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the EW scale will basically depend on two different factors: the matching conditions and

the running evolution. Focusing on the former in the upper–left panel of Fig. 1 we analyze

the thresholds relevance by plotting for every coupling the ratio (defined as δ in the plot)

of its value over the one without the threshold contribution, both evaluated at the scale

m̃, as functions of At/m̃ for tan β = 2,MU = 200GeV,M3 = 500 GeV, µ = 100 GeV, and

m̃ = 100 TeV. It is remarkable that the threshold contributions to the couplings λ,Q and

K can easily reach a value ∼ 10% and beyond, unlike the ht, Y,G-thresholds which are

almost At-independent and remain below ∼ 2% 4. For this reason it is sensible to neglect

the threshold effects of ht, Y,G, since their contributions are within the uncertainty of our

approximations.

The relevance of the running is also exhibited in Fig. 1 where the ratios ρ(m̃)/ρ(X) ≡
Θ[ρ] for all couplings ρ are plotted as functions of m̃ (where X = M3 for ρ = M3, G

and X = mt for the rest of couplings) for At = 0.6 m̃ and keeping the rest of parameters

fixed as in the upper–left plot. In particular in the upper–right panel we plot masses and

in the lower panels all dimensionless couplings. For example we can compare from the

lower–right figure how the couplings ht and Y evolve differently, even if we had neglected

their different threshold effects.

3.2 The Higgs mass

Once we have computed the values of the couplings in (2.1) it is straightforward to obtain

the Higgs effective potential in which the leading logarithms are resummed. Since this

potential is strongly dependent on the renormalization scale we need to consider the one–

loop part of the effective potential calculated in the LE theory. We are adding to the SM

fields only the contribution from t̃R since the contribution from charginos and neutralinos

(which is numerically small) would spoil the scale invariance of the effective potential in our

approximation where we are neglecting electroweak gauge couplings in the LE β-functions.

The one–loop contributions to the effective potential then read as

V1−loop(φc) =
6

64π2

∑

i

ni m4
i (φc)

(
ln

m2
i (φc)

µ2
− Ci

)
with i = W,Z, h, χ, t̃R, t (3.1)

where CW = CZ = 5/6, Ch = Cχ = Ct̃R
= Ct = 3/2 and nW = nt̃R

= 6, nZ = 3,

nh = 1, nχ = 3, nt = −12 and the masses are

m2
W =

g2

4
φ2

c , m2
Z =

g2 + g′2

4
φ2

c ,

m2
h =

λ

2
(3φ2

c − v2) , m2
χ =

λ

2
(φ2

c − v2) ,

m2
t̃R

= M2
U +

Q

2
φ2

c , m2
t =

h2
t

2
φ2

c , (3.2)

4It has been checked that this estimate holds also for other values of em.
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Figure 2: mH/GeV (solid lines) and κt̃ (dashed curves) predicted for the case MU = 200 GeV,

µ = 100 GeV and M3 = 500 GeV for several values of tanβ. In the upper–left (upper–right) panel

m̃ = 3 (100) TeV has been fixed and in the lower–left (lower–right) panel At = 0(1.3)m̃. The

experimental lower bound on the Higgs mass is marked by a dotted straight line.

with the renormalization scale conventionally chosen to be mt. Notice that by this renor-

malization scale choice and thanks to the use of the LE theory the logarithms of (3.1)

are always small. Moreover the addition of the one–loop contribution (3.1) eliminates the

scale dependence of the potential proportional to strong–like or Yukawa–like couplings up

to the one–loop order.

The second derivative of the potential at the EW minimum provides the Higgs mass

within the one-loop renormalization group improved effective theory. The numerical result

is shown in Fig. 2 where we plot the Higgs mass mH (solid line). We also introduce the

parameter κt̃ ≡ 10
√

mt̃R
/GeV (dashed line) which parameterizes the lightest stop mass.

The parameter κt̃ has the advantage of being related in a simple way to the stop mass, and

since it acquires values similar to the Higgs mass (in GeV units), it may be represented

together with it on a linear scale. Observe that κt̃ = 100 is equivalent to mt̃R
= 100 GeV

and mt̃R
< mt corresponds to κt̃ . 130. Values of κt̃ . 100 are therefore excluded by LEP

searches. We plot both variables as functions of At/m̃ [upper panels: on the left (right)
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panel m̃ = 3 (100) TeV] and m̃ [lower panels: on the left (right) panel At = 0 (1.3) m̃] for

several values of tan β.

For mH and κt̃ the different values of tan β are encoded by different colours (level

of line darkness) presented in the legend. Since a change of tan β does not appreciably

modify κt̃ we mark only the extremal curves corresponding to tan β = 15 and tan β = 2.

In all the plots we have fixed MU = 200 GeV, µ = 100 GeV and M3 = 500 GeV.

Some comments on the different masses can be easily drawn from Fig. 2. We notice

that because of the experimental bound on the Higgs mass, mH > 114.7 GeV [19] (dotted

straight line in Fig. 2) the model with m̃ ∼ 1 TeV requires tan β > 3 and in general the

smaller tan β is the closer to 1.3 m̃ the triliniear coupling At has to be since the Higgs

mass has a maximum there. This requirement is relaxed if m̃ is increased, but scales as

large as m̃ ≃ 107 TeV are necessary to overcome the Higgs mass bound for any tan β & 2

independently of At. On the contrary if we allow At ≃ 1.3 m̃ the model is experimentally

safe for tan β ≥ 2 already at m̃ = 5 TeV. On the other hand if we require the right-handed

stop to be lighter than the top quark (κ . 130) with M2
U ∼ (200 GeV)2 a large At is

needed. Another way to maintain the stop lighter than the top quark is by decreasing

M2
U , which lowers the stop mass. For M2

U . (100 GeV)2 the maxima of the Higgs mass

curves are excluded by the LEP bound on the stop mass. Consequently the bounds on

tan β, At and m̃ become even stronger in this case.

The latter result applies, in particular, for the conditions which are favorable to elec-

troweak baryogenesis (EWBG) where M2
U < 0 is needed. As an example, in Fig. 3 we

choose the same parameters as in Fig. 2 but with a right-handed stop mass parameter

M2
U = −(100 GeV)2 and m̃ = 100 (1000) TeV in the upper–left (right) plot. We can see

from the right–panel of Fig. 3 that there exists the upper bound At . 0.6 m̃ coming from

the experimental bounds on the stop mass. Notice that, independently of the experimental

bounds, larger values of At/m̃ would lead to an instability of the electroweak minimum.

Moreover values of At/m̃ . 0.5 are also required in order to obtain a strong enough elec-

troweak phase transition [6]. On the other hand the rough estimate tan β . 10 [14, 16],

coming from the requirement of generation of the observed baryon asymmetry of the Uni-

verse, pushes the parameter m̃ towards values m̃ ≫ 1 TeV which justifies a posteriori the

study of the effective theory with resummed logarithms. A detailed analysis of electroweak

baryogenesis in the present model will be thoroughly analyzed in Ref. [13]. Let us stress

that values of m̃ ≫ 1 TeV are consistent with those necessary in order to suppress the

one-loop contributions to the electric dipole moment of the electron and the neutron in

the light stop scenario [15].

Finally let us observe that all previous comments, which apply for a gluino mass of

500 GeV, can also be extended to other values of the gluino masses. In particular we have

checked that for M3 ≃ 1 TeV the Higgs mass only decreases by a few percent with respect

to the case of gluino masses at the EW scale.
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Figure 3: Plots similar to those in upper panels of Fig. 2, but with a different value of MU

[M2

U
= −(100 GeV)2] and of m̃ (m̃ = 100 TeV in the left panel and m̃ = 1000 TeV in the right

one). The lower plot is done with At/m̃ = 0.5 .

4 Gauge coupling unification

In this section we will consider the issue of gauge coupling unification in the theory where

below the scale m̃ there is the ET which has been considered in Section 2 and beyond m̃ the

MSSM. In the extreme case where m̃ is at the EW scale, the condition of gauge coupling

unification yields low energy values for the strong gauge coupling α3 consistent with those

obtained in low energy MSSM scenarios. The MSSM prediction, however, depends strongly

on the possible threshold corrections to the gauge couplings at the GUT scale, as well as on

the additional threshold corrections induced by the weak scale supersymmetric particles.

Ignoring high-energy threshold corrections, one obtains a range of values α3(MZ) = 0.120–

0.135, with the exact value depending on the precise MSSM spectrum. This range of values

is compatible with experimental data, but with some tension towards a predicted high

value. When m̃ is increased the predicted value of α3(MZ) coming from the requirement

of gauge coupling unification moves towards lower values. Therefore for a given low energy

spectrum one can find agreement with the experimental values for a certain range of values

of m̃. In this sense it is possible to make a grand unification “prediction” for the parameter
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m̃. High energy threshold corrections would lead to an uncertainty on this range of m̃

values. In this section, we will quantify these issues after considering the two-loop RG

evolution of the gauge couplings.

The two-loop renormalization-group equation for the gauge couplings are [20]

(4π)2
d

dt
gi = g3

i bi

+
g3
i

(4π)2




3∑

j=1

Bijg
2
j − du

i h2
t − dW

i

(
g̃2
u + g̃2

d

)
− dB

i

(
g̃′2u + g̃′2d

)
− dG

i G2 − dJ
i J2


(4.1)

where t = ln τ , τ is the renormalization scale and we use the convention g2
1 = (5/3)g′2.

Eq. (4.1) is scheme-independent up to the two-loop order.

In the effective theory below m̃, the β-function coefficients are

b =

(
143

30
,−7

6
,−41

6
+ 2Θg̃

)
, B =




376
75

18
5

196
15

6
5

106
3 12

49
30

9
2 −67

3 + 48Θg̃


 , (4.2)

du =

(
17

10
,
3

2
, 2

)
, dG =

(
32

10
, 0,

13

2

)
Θg̃ , dJ =

(
18

5
, 0, 1

)
, (4.3)

dW =

(
9

20
,
11

4
, 0

)
, dB =

(
3

20
,
1

4
, 0

)
, (4.4)

while above m̃ one has the MSSM result [replacing in (4.1) the SM Yukawa ht by the

MSSM one λt related to the former by (2.6)] [21]

b =

(
33

5
, 1,−3

)
, B =




199
25

27
5

88
5

9
5 25 24
11
5 9 14


 , (4.5)

du =

(
26

5
, 6, 4

)
, dG = dJ = dW = dB = 0 . (4.6)

Finally the one-loop RGE of the Yukawa–like and gauge–like couplings are given in

Eq. (2.12), while for the supersymmetric Yukawa coupling [21]

(4π)2
dλt

dt
= λt

[
−13

15
g2
1 − 3g2

2 − 16

3
g2
3 + 6λ2

t

]
. (4.7)

We will consider the following experimental inputs [19]

sin2 θMS(MZ) = 0.2312 ± 0.0002 , (4.8)

α−1
EM(MZ) = 127.906 ± 0.019 , (4.9)

α3(MZ) = 0.1176 ± 0.0020 , (4.10)

and by imposing unification of α1(MGUT ) = α2(MGUT ) we obtain a prediction for α3(MZ)

as it is shown in the left panel of Fig. 4. The solid black line in the left panel of Fig. 4

12



10
3

10
4

10
5

10
6

10
7

10
8
0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

0.128

0.13

α
3
(M

Z
)

m̃ [GeV ]
10

3
10

4
10

5
10

6
10

7
10

8
0

0.01

0.02

0.03

0.04

0.05

α
GUT

(M
GUT

)

M
GUT

 / (10
18

 GeV)

m̃ [GeV ]

Figure 4: Predicted values of α3(MZ) [left panel: black lines are for all gauginos at the EW scale

and grey lines for all gauginos at the EW scale except for the gluino with a mass M3 = 500 GeV]

by means of the two-loop (solid line) and one-loop (dashed-line) RG evolution, and the resulting

two-loop predictions for MGUT and αGUT [right panel] as functions of m̃ from the unification

condition. The (yellow) band shows the experimental value of α3(MZ) within 2 σ.

represents the two-loop result for values of all gaugino masses about the weak scale, while

the dashed black line represents the one-loop result. The grey lines are corresponding

plots for a gluino mass M3 = 500 GeV, which roughly follows the gaugino mass unification

relation M3/M2 ≃ 3. In the figure the experimental value of α3(MZ) within 2σ is marked

by a (yellow) band. For our two choices of M3 the gluino decoupling almost does not

modify the curves of MGUT and αGUT as function of m̃ and for this reason in the right

panel we do not differentiate between both cases. Using the experimental value for the

strong coupling one can get for the case where all gauginos are at the EW scale the 1σ

prediction for m̃ as

m̃ ≃ 101.6±0.6 TeV . (4.11)

If one considers instead the standard unification relation between the gaugino masses the

predicted values of α3(MZ) would be shifted to larger values, ∆α3(MZ) ≃ 0.005 and the

resulting values of m̃ will be shifted up to

m̃ ≃ 103.3±0.6 TeV . (4.12)

For these two ranges of m̃ altogether the unification scale MGUT turns out to be all in all

1 ÷ 2 × 1016 GeV, where the smaller value is referred to the largest available m̃ value.

The numerical results may be analytically understood by considering the modifications

of the two-loop predictions for α3(MZ) by one-loop threshold corrections induced by the

supersymmetric particles,

α3(MZ) = α3(MZ)|MSSM − α2
3(MZ)

∣∣
MSSM

19

28π
ln

(
TMSSM

MZ

)
, (4.13)
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where [22]

TMSSM = |µ|
(

M2

M3

)28/19 (M2

|µ|

)4/19( m̃

mt̃

)5/19 ( m̃

|µ|

)3/19

. (4.14)

In the above α3(MZ)|MSSM ≃ 0.127 would be the value that would be obtained if all

supersymmetric particles would have masses equal to MZ . The second-to-last and last

terms in Eq. (4.14) represent the effects of separating the stop mass with respect to the

other sfermion masses and of increasing the non-SM Higgs doublet mass, respectively. In

particular for the case in which all gaugino masses, |µ| and the light stop are of the order

of the weak scale one can reproduce the 1σ prediction for m̃ as given in Eq. (4.11), while

in the case of standard unification relation of gaugino masses Eq. (4.12) is recovered if

equal values of |µ| and M2 of order of the weak scale are assumed. These low energy

supersymmetric threshold effects may be compensated by thresholds at the GUT scale,

which are strongly model dependent, but are naturally of the same order as the low

energy supersymmetric thresholds (see, for instance Ref. [23]). Therefore for hierarchical

gaugino masses, as the ones required by electroweak baryogenesis, the natural values of

m̃ necessary to achieve unification and consistent at 95 % C.L. with present experimental

values of α3(MZ) are about 100 TeV. Somewhat lower values of m̃ of the order of a few

tens of TeV may be obtained by pushing |µ| to larger values.

The values of m̃ consistent at 95 % C.L. with unification of couplings (for light gluinos

3TeV < m̃ < 600TeV and for standard gaugino unification 100TeV < m̃ < 3 × 104 TeV)

have an impact on the Higgs mass predictions. From Fig. 2, we can see that values of m̃

larger than a few TeV lead to consistency with the LEP Higgs mass constraints for a large

range of values of tan β when At/m̃ is conveniently chosen. For the (positive) value of

M2
U used in Fig. 2, M2

U = (200 GeV)2, values of m̃ of the order of 600 TeV (3× 104 TeV)

lead to maximum values of the Higgs mass around 144 (150) GeV. On the other hand, as

shown in Fig. 3, for negative values of M2
U and At . 0.5 m̃, as required by electroweak

baryogenesis, the values m̃ ≃ 600 TeV (3×104 TeV) lead to maximum values of the Higgs

boson mass around 125 (129) GeV.

5 Model cosmology and collider phenomenology

The cosmology and collider phenomenology of the light stop scenario has been the subject

of study of different articles. For masses below 135 GeV, as preferred by the electroweak

baryogenesis scenario, the light stop mass will be in general smaller than the sum of the

W mass, the b-quark mass and the lightest neutralino mass, and therefore its three body

decay channels will be suppressed. Under these conditions, the main stop decay channel

may be a loop-induced two body decay channel into a charm quark and the lightest

neutralino. Searches for such a light stop at LEP put a bound on its mass of about

100 GeV [24].

Current searches at the Tevatron collider for a stop decaying into charm jets and neu-

tralinos lead to a final state of two jets and missing energy. The jets should be sufficiently
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energetic for the Tevatron to be able to trigger on those events, what in practice demands

mass differences between the stops and the neutralinos of about 30 GeV or larger [25, 26].

Therefore the Tevatron collider cannot set any constraints on direct production of stops

for mass differences smaller than 30 GeV. Searches for light stops in direct pair production

of these particles, will be equally difficult at the LHC.

Small mass differences between the stop and the neutralino define a particularly in-

teresting region of parameters since they are helpful in providing the proper dark matter

density in scenarios with heavy fermions. Indeed, for mass differences of about 20 GeV,

the co-annihilation between the stop and the lightest neutralino leads to a neutralino dark

matter density consistent with experimental observations [16].

Searches for light stops at the LHC may proceed through additional production chan-

nels. For instance, the light stops may be produced from the decay of heavy gluinos.

Assuming that the right-handed stops are the only squarks with masses below the gluino

mass, as happens in the light stop scenario discussed in this article, the gluinos being

Majorana particles may decay into a stop and an anti-top or into an anti-stop and a top-

quark. One can then consider the decay of a pair of gluinos into two equal sign top-quarks

and two stops (two charm jets and missing energy). It has been shown [27] that under

these conditions, the light stops may be found even for small mass differences, of about

5 GeV, provided the heavy gluinos are lighter than about 900 GeV.

One would be interested in finding a method of stop detection that would be inde-

pendent of the exact masses of other sparticles and which would work for small mass

differences. A possibility is to analyze the possible production of light stops in association

with a photon or a gluon (jet). The photon signatures are particularly clean, and for

small mass differences they may be used as a complementary channel for the search for

light stops at hadron colliders leading to a final state of two photons, soft jets and missing

energy. Although not as clean as the photon signatures, due to larger rates, the jet plus

missing energy signature may allow a further extension of the LHC reach for light stops.

An analysis in this direction is in progress [28].

6 Conclusions

In this article we analyzed the light stop scenario in which all squarks and sleptons, apart

from a mainly right-handed stop, are significant heavier than the weak scale. The large

values of the scalars imply that the low energy effective theory predictions may only be

evaluated in a precise way by resummation of the large leading logarithms associated with

the decoupling of the heavy scalars. Since supersymmetry is broken at scales below the

heavy scalar mass m̃, the Yukawa couplings associated with gauginos and Higgsinos must

be computed, starting with their boundary values given by the gauge and supersymmetric

Yukawa couplings respectively. Similarly the quartic couplings of the Higgs boson and the

light top-squark may be computed through their RG evolution to lower energies.

We have applied the low energy effective theory to obtain a reliable computation of the
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lightest CP-even Higgs boson mass for large values of m̃. In the extreme case where m̃ is

close to the EW scale, logarithm resummation is unnecessary and we have checked that our

calculation of the SM-like Higgs is consistent with earlier calculations in the literature [30].

Since the quartic coupling is bounded by its relation with the weak gauge couplings plus

finite threshold corrections at high energies, the Higgs mass remains bounded to small

values, smaller than about 133 GeV for negative values of M2
U ≃ −(100 GeV)2 and

At . 0.5 m̃ even for large values of m̃. This has important implications for the realization

of the electroweak baryogenesis scenario. In a general light stop scenario with no EWBG

mechanism built in, this bound on the Higgs mass may be relaxed for positive values of

M2
U , for which the trilinear mass parameter At may be pushed to larger values, leading to

masses that may be as large as 152 GeV for large values of m̃.

We have also analyzed the issue of unification of gauge couplings. We have shown

that the corrections induced by the heavy spectrum are helpful in rendering the measured

values of the gauge couplings consistent with the unification conditions even for relatively

large values of m̃. For instance considering universal values of the gaugino masses at low

energies and values of |µ| of about 100 GeV, one obtains that appropriate unification is

achieved for values of m̃ ≃ 101.6±0.6 TeV. A similar result is obtained for the standard

unification relation between the gaugino masses, for a Higgsino mass parameter of about

1 TeV. If |µ| takes values close to 100 GeV, instead, the value of m̃ consistent with the

unification of couplings is pushed up to m̃ ≃ 103.3±0.6 TeV. This ranges of masses have

implications on the predicted Higgs mass. For positive values for M2
U ≃ (200GeV)2,

the ranges of values of m̃ compatible at 95 % C.L. with gauge coupling unification lead

to an upper bound on the Higgs mass of about 150 GeV. For negative values of M2
U and

At . 0.5 m̃, as the ones required for baryogenesis, the upper bound becomes even stronger,

of about 129 GeV.

The resulting phenomenology of the light stop scenario was also discussed in some

detail. If a light Higgs, with mass mh . 133 GeV is found, the next step to confirm the

EWBG scenario within the MSSM would be the discovery of a light stop, with a mass

below the top quark mass. Light stop searches at the Tevatron may lead to an experimental

confirmation of this scenario, but may not be successful if the mass difference between the

stop and the neutralino is smaller than about 30 GeV. Unfortunately, these small mass

differences may be the ones required to obtain the proper dark matter relic density by

means of coannihilation between the stop and the lightest neutralino. Searches at the

LHC may be able to test the coannihilation region in case the gluino is lighter than about

900 GeV. For heavier gluino masses alternative methods of detection at the LHC via the

production of light stops in association with photons or jets, are currently being studied

and seem to be promising.
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Appendix

A Thresholds

In this appendix we will give some details about the calculation of the different thresholds

which appear in Section 2. At the renormalization scale m̃ the ET (2.1) has to describe the

same physics as its corresponding HE theory, the MSSM. Here we will match both theories

at one–loop in the Landau gauge using the step–function approximation. Graphically the

matching is presented in Figs. 5-11.

Since the matching has to be performed order by order in perturbation theory, we

will start by considering the effective coupling Q, which is the only one having not trivial

matching at tree–level (see Fig. 5). This matching can be easily solved by neglecting heavy

field kinetic–terms and solving for their equation of motion. The result is given in (A.7).

At one–loop we cannot follow the same procedure because in dimensional regularization

no kinetic–term can be neglected inside the loop. In such a case we can compute the

diagrams in the LE and HE theories and, after using the tree–level matching conditions,

impose the equivalence of the two results 5. We will follow this diagrammatic approach only

for the ht, Yt, G proper vertex matching, Figs. 6-8, and the wave function contribution

furnished by each external leg (as an example we draw the case of t̃R and tR in Figs. 9

and 10). In fact in these cases identifying the threshold sources is straightforward. The

corresponding HE diagrams are shown in Figs. 6-10. The resulting proper vertex thresholds

are given in (A.8)-(A.10) and the wave function ones in (A.13). Finally for the proper

vertex threshold ∆λ (∆K) it is easier to match the one–loop Higgs (stop) LE and HE

effective potentials, instead of performing the matching diagrammatically (see Fig. 11) 6.

Let us start to explicitly analyze the case of ∆λ for which we have to impose the

equivalence of the terms proportional to φ4
c after the expansion of the HE and LE effective

5Clearly, this operation is well defined only after fixing the subtraction scheme, in our case the MS.
6In the Q matching condition we do not consider the one–loop proper vertex threshold since the tree–

level one dominates.
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potentials

Λ − m2

2
φ2

c +
λ

8
φ4

c + V h
LE(φc) = Λ′ − m′2

2
φ2

c +

(
g2 + g′2

)

32
φ4

c cos2 2β + V h
HE(φc) + O(φ5

c)

(A.1)

where m2 and Λ are equal to m′2 and Λ′ up to threshold effects coming from the difference

between the one-loop contributions V h
HE(φc) and V h

LE(φc)

V h
HE(φc) − V h

LE(φc)

=
6

64π2

∑

r=t̃1,t̃2

m4
r

(
ln

m2
r

τ2
− 3

2

)
− 6

64π2
m4

t̃R

(
ln

m2
t̃R

τ2
− 3

2

)
, (A.2)

where the renormalization scale is fixed to τ = m̃, mt̃R
is explicit in (3.2) and t̃1, t̃2 are

the eigenvalues of




m̃2 + λ2
t (φ

2
c/2) sin2 β −λtÃt(φc/

√
2) sin β

−λtÃt(φc/
√

2) sin β M2
U + λ2

t (φ
2
c/2) sin2 β


 , (A.3)

with Ãt = At − µ/ tan β. The threshold ∆λ can be derived extracting the coefficient of

the term φ4
c/8 from the right-hand side of (A.2). Finally remembering that m̃2 ≫ M2

U ,

we obtain the relation (A.11).

Following the same idea we can also obtain ∆K. We give a constant background sc

to the real third colour component of t̃R, i.e. 〈t̃R3
〉 = sc/

√
2, which breaks the SU(3)c

and U(1)Y symmetries, and we impose the equivalence of its one–loop effective potential

in the LE and HE theory at the scale m̃

Λ +
M2

U

2
s2
c +

K

24
s4
c + V t̃R

LE(sc) = Λ′ +
M ′2

U

2
s2
c +

g2
3

24
s4
c + V t̃R

HE(sc) + O(s5
c) , (A.4)

where

V t̃R
HE − V t̃R

LE =
4

64π2

5∑

r=1

m4
r

(
log

m2
r

τ2
− 3

2

)
− 4

64π2
ν4

H

(
log

ν2
H

τ2
− 3

2

)
, (A.5)

with τ = m̃ and ν2
H = λ2

t sin2 β(1 − Ã2
t

em2 )s2
c

2 . Moreover for r = 1, 2, 3 the masses m2
r are

the eigenvalues of the squared mass matrix of q̃3, H and Hh (the heavy projection of the

Higgses: H†
u → sin βHt

hǫ and Hd → cos βǫH∗
h)

N =




(
λ2

t −
g2

3

3

)
s2
c

2 + m̃2 λtB̃t
sc√
2

cos β λtÃt
sc√
2

sinβ

λtB̃t
sc√
2
cos β m̃2 + λ2

t
s2
c

2 cos2 β λ2
t

s2
c

4 sin 2β

λtÃt
sc√
2
sin β λ2

t
s2
c

4 sin 2β λ2
t

s2
c

2 sin2 β


 , (A.6)
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Figure 5: Tree–level proper vertex matching of Q.
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Figure 6: One–loop proper vertex matching of ht at τ = m̃.
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Figure 7: One-loop proper vertex matching of Yt at τ = m̃.
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Figure 8: One–loop proper vertex matching of G at τ = m̃.
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Figure 9: One-loop matching of the t̃R wave function renormalization at τ = m̃.
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Figure 10: One-loop matching of the tR wave function renormalization at τ = m̃.
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+

H(t̃R) H(t̃R)

H(t̃R) H(t̃R)

t̃R(H)

t̃R(H)

+ · · · =

H(t̃R) H(t̃R)

H(t̃R) H(t̃R)

+

H(t̃R) H(t̃R)

H(t̃R) H(t̃R)

t̃R(H)

t̃R(H)

+

H(t̃R) H(t̃R)

H(t̃R) H(t̃R)

t̃R(H) t̃R(H)

q̃

q̃

+ · · ·

Figure 11: One-loop proper vertex matching of λ (K) at τ = m̃.

with B̃t = At + µ tan β, and finally m2
4 ≡ m2

q̃1
= m2

5 ≡ m2
q̃2

= m̃2 + s2
c

12 . Extracting from

the right-hand side of (A.5) the coefficient of the term s4
c/24 we obtain ∆K as expressed

in (A.12).

To conclude here we collect all the proper vertex thresholds

∆Q = −λ2
t sin2 β

∣∣∣Ãt

∣∣∣
2

m̃2
, (A.7)
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∆ht =
8

3(4π)2
g2
3λtÃt sin β M3 b1 , (A.8)

∆G =
2

(4π)2
g3λ

2
t

(
−1 +

µ2 ln(µ2/m̃2)

µ2 − m̃2

)
, (A.9)

∆Yt =
8

3(4π)2
g2
3λt

(
1 − M2

3 ln(m̃2/M2
3 )

m̃2 − M2
3

)
, (A.10)

∆λ =
3

8π2
(λt sinβ)4Ã4

t

m̃2 − M2
U − M2

U ln(m̃2/M2
U )

(m̃2 − M2
U )3

, (A.11)

∆K = c0 + c1
Ãt

m̃
+ c2

Ã2
t

m̃2
+ c3

Ã4
t

m̃4
, (A.12)

where

b1 =
M2

3 (m̃2 − M2
U ) log(m̃2/M2

3 ) + M2
U (m̃2 − M2

3 ) log(m̃2/M2
U )

(m̃2 − M2
3 )(M2

3 − M2
U )(m̃2 − M2

U )
,

c0 =
1

16π2

(
3λ4

t sin2 2β + 2λ2
t cos2 β

[
g2
3 − 3λ2

t

(
1 + cos2 β

)] B̃2
t

m̃2
+ λ4

t cos4 β
B̃4

t

m̃4

)
,

c1 = −3λ4
t sin2 2β

8π2

B̃t

m̃
,

c2 =
1

32π2

(
8λ2

t sin2 β
[
g2
3 − 3λ2

t

(
1 − sin2 β

)]
+ 3λ4

t sin2 2β
B̃2

t

m̃2

)
,

c3 = −3λ4
t sin4 β

4π2
,

along with the wave function threshold contributions of each external leg

Zt̃R
= 2

(
λtB̃t cos β

)2
F (m̃2) + 2

(
λtÃt cos β

)2
F (0) [q̃Hh + q̃H],

ZH =
(
λtÃt cos β

)2
F (M2

U ) [q̃ t̃R],

ZtR = 2 (λt cos β)2 E(0) + 2λ2
t E(µ2) [Hhq + q̃H̃u],

ZtL = (λt cos β)2 E(0) + 8
3g2

3 E(M2
3 ) [HhtR + q̃g̃],

ZH̃u
= λ2

t E(0) [q̃tR],

Zg̃ = 11g2
3 E(0) [q̃q],

(A.13)

where the particles propagating in the loops are indicated inside squared brackets and the

functions F (m2) and E(m2) are defined by

F (m2) ≡ − 1

m̃2(4π)2
a4 − 1 − 2a2 log(a2)

2(a2 − 1)3
, (A.14)

E(m2) ≡ − 1

(4π)2
−1 + (4 − 3a2)a2 + 2a2 log a2

4(a2 − 1)2
, (A.15)
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with a2 = m2/m̃2.

Because of the thresholds (A.13) the kinetic terms of the effective theory would not be

canonically normalized if these wave function thresholds were not absorbed in a redefinition

of the effective fields. This implies that any generic effective coupling ρ has also gotten a

wave function threshold dependence coming from its field redefinitions as

1 − 1

2
∆Zρ ≡ 1 − 1

2

∑

i

Zi , (A.16)

where i runs over the fields of the interaction ρ.

A last remark concerns the gauge couplings. They have no threshold because Ward

identities impose a cancellation between the proper vertex threshold and the non-vector

fields wave function ones. Therefore a possible threshold could only come from the vector

boson wave function threshold but the latter is zero when evaluated at the renormalization

scale m̃. Finally let us observe that the mass thresholds are not necessary for our aim. In

fact the LE masses only appear inside one–loop thresholds in which a possible one–loop

mass thresholds would only contribute at two–loop.

Finally if we assume the gluino mass heavy enough (but below m̃), it is necessary

to also integrate it out and repeat at the scale τ = M3 the procedure just described.

The gluino decoupling affects the proper vertex K and the right–handed top and stop

propagators, which produce the right–handed top and stop wave function thresholds and

the mass threshold ∆′M2
U

7.

Concerning the wave function thresholds, the matching conditions at τ = M3 lead to

∆′ZtR =
5 G2

6(4π)2
, (A.17)

∆′Zt̃R
=

2 G2

3(4π)2
3 − 4b2 + b4 − 2b2(b2 − 2) log b2

(b2 − 1)2
,

where b2 = M2
U/M2

3 .

In order to calculate the proper vertex threshold ∆′K and ∆′M2
U we use the procedure

of matching the stop effective potential in the presence of a background field. After giving

a VEV to the third colour stop, 〈t̃R3
〉 = sc/

√
2, mixing mass terms between right top and

gluino are generated but, after diagonalizing, only t
(3)
R and g̃(8) have masses depending

on sc; explicitly r± = M3 ±
√

G2s2
c 4/3 + M2

3 . Therefore the thresholds can come only

from the contribution to the effective potential of the heaviest fermionic eigenstate, which

results

− 2r4
+

64π2

[
log

r2
+

M2
3

− 3

2

]
=

3 M4
3

64π2
+

G2 M2
3

24π2
s2
c −

G4

144π2
s4
c + O(s6

c) , (A.18)

7We also consider the mass thresholds because we want to know the masses evolution beyond the

decoupling scale M3.
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and thus

∆′K = − G4

6π2
,

∆′M3 =
G2 M2

3

24π2
. (A.19)

B Renormalization group equations

In this appendix we sketch the calculation of the one–loop RGE in the ET 8. In order to

present our result it is useful to define

βη ≡ ∂η

∂ ln τ
= β(v)

η + η
∑

i

ni

2
γρi

, (B.1)

where τ is the renormalization scale, η is the coupling between different fields ρi with

multiplicity ni where the index i runs over the fields which are involved in the particular

vertex, and the functions β
(v)
η and ηγρi

are the respective contributions from the renor-

malization of the proper vertex and the anomalous dimension of each external leg. In the

same way as for the threshold effects the βη and γρi
functions are computed in the MS

renormalization scheme and using the Landau gauge. We will implicitly consider renor-

malization scales τ larger than any fermionic mass, in particular the gluino mass M3, and

for τ < M3 the correct results are obtained by simply erasing the couplings G and M3 and

disregarding βg̃ and γg̃.

By using the diagrammatic procedure we find

(4π)2γt̃R
= 4Y 2

t +
16

3
G2 − 8g2

3 ,

(4π)2γqL
= h2

t + Y 2
t ,

(4π)2γtR = 2h2
t +

8

3
G2 ,

(4π)2γH = 6h2
t , (B.2)

(4π)2γH̃u
= 3Y 2

t ,

(4π)2γg̃ = G2 .

γW̃ = γB̃ = γH̃d
= 0

and

β(v)
gu

= β
(v)
g′u

= β(v)
gd

= β
(v)
g′

d

= β
(v)
J = β

(v)
Yt

= 0 ,

(4π)2β
(v)
G = −9 g2

3G ,

(4π)2β
(v)
ht

= −8 htg
2
3 . (B.3)

8We have checked that our results are consistent with the MSSM [21] and Split Supersymmetry [18]

limits.
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On the other hand to compute β
(v)
λ , β

(v)
Q and β

(v)
K we have found it very convenient

to use the effective potential method [31]. In order to do that we introduce background

fields φc and sc for H and t̃R defined as

H → 1/
√

2

(
φ2 + iφ3

h + φc + iφ1

)
(B.4)

t̃
(ω)
R → 1/

√
2
(
t̃
(ω)
1R + δj3sc + it̃

(ω)
2R

)
, (B.5)

where ω is the color index. In this background some fields acquire a mass and, in particular,

the bosonic mass spectrum becomes

ga : m2 = 0 a = 1, 2, 3

ga : m2 = s2
c g2

3/4 a = 4, 5, 6, 7

ga : m2 = s2
c g2

3/3 a = 8

φω : m2 = φ2
cλ/2 + s2

cQ/2 ω = 1, 2, 3

t̃
(ω)
1R , t̃

(α)
2R : m2 = φ2

cQ/2 + s2
cK/6 ω = 1, 2, 3 α = 1, 2

(
t̃
(3)
1R

h

)
: m2 = 1

2

(
s2
cK + φ2

cQ 2scφcQ

2scφcQ 3φ2
cλ + s2

cQ

)

(B.6)

where we have written only the terms which depend on φc and/or sc. Analogously the

fermionic mass spectrum looks like

(
b
(3)
L

H̃+
u

)
: m =

(
0 Y ′

Y ′ 0

)
(B.7)




t
(1)
L

t
(1)†
R

g(4)

g(5)


 : m =




0 h′ 0 0

h′ 0 G′ −iG′

0 G′ 0 0

0 −iG′ 0 0


 (B.8)




t
(2)
L

t
(2)†
R

g(6)

g(7)


 : m =




0 h′ 0 0

h′ 0 G′ −iG′

0 G′ 0 0

0 −iG′ 0 0


 (B.9)




t
(3)
L

t
(3)†
R

H̃0
u

g(8)


 : m =




0 h′ Y ′ 0

h′ 0 0 −2G′

√
3

Y ′ 0 0 0

0 −2G′

√
3

0 0


 (B.10)

where h′ = φcht/
√

2 , Y ′ = scYt/
√

2 and G′ = scG/2.
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Using the property of invariance of the effective potential with respect to the renor-

malization scale we can write

τ
dV (φc, sc)

dτ
=

τ
d

dτ

(
V0(φc, sc) +

1

64π2
STr

[
M4(φc, sc) ln

[M4(φc, sc)

τ2

]]
+ · · ·

)
(B.11)

= · · · + 1

8
β

(v)
λ φ4

c +
1

24
β

(v)
K s4 +

1

4
β

(v)
Q φ2

cs
2
c −

1

32π
STr

[
M4(φc, sc)

]
= 0 ,

where the ellipses stand for terms we are not interested in, V0(φc, sc) is the tree–level scalar

potential of (2.1) in the presence of the background fields φc and sc, M2(φc, sc) is the mass

spectrum of the fields written in (B.6)-(B.10) and, finally, for a given function f(M2) of the

squared mass matrix of all fields in the theory, STrf(M2) ≡ Tr
∑

J(−1)2J (2J + 1)f(M2
J ).

Therefore in (B.11) β
(v)
λ , β

(v)
Q and β

(v)
K are put easily in evidence by the expansion in

powers of sc and φc of STrM4(φc, sc). Furthermore for our purposes only the terms

M4
J (φc, sc) proportional to s4

c , φ4
c or s2

cφ
2
c are interesting and consequently we can ignore

in M2
J(φc, sc) the dependence on dimensional couplings, as we have done in (B.6)-(B.10).

After performing the corresponding expansions we get the β-functions

(4π)2β
(v)
λ = 12λ2 + 6Q2 − 12h4

t ,

(4π)2β
(v)
Q = KQ + 3λQ + 4Q2 − 32

3
G2h2

t − 4Y 2h2
t ,

(4π)2β
(v)
K = 12Q2 +

14

3
K2 + 13g4

3 − 88

3
G4 − 24Y 4

t . (B.12)

Finally by plugging the results (B.2), (B.3) and (B.12) into (B.1), we find the result which

was anticipated in (2.12).

In order to complete our renormalization picture we will compute now the running of

the masses. By using standard diagrammatic methods we obtain

β
(v)
M1

= β
(v)
M2

= β(v)
µ = 0 ,

(4π)2β
(v)
M3

= −18g2
3M3 , (B.13)

(4π)2β
(v)
m2 = −6Q m2

U ,

(4π)2β
(v)

M2

U

= −32

3
M2

3 G2 +
8

3
KM2

U − 4m2Q − 4Y 2
t µ2 ,

and using (B.1) and (B.2) we find the expressions in Eq. (2.13).
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